SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF-kappaB activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth.
نویسندگان
چکیده
Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug etodolac, known as SDX-308, and its effects on osteoclastogenesis and multiple myeloma cells. SDX-101 is another structural analog of etodolac that is already used in clinical trials for the treatment of B-cell chronic lymphocytic leukemia (B-CLL). Compared with SDX-101, a 10-fold lower concentration of SDX-308 induced potent (60%-80%) inhibition of osteoclast formation, and a 10- to 100-fold lower concentration inhibited multiple myeloma cell proliferation. Bone resorption was completely inhibited by SDX-308, as determined in dentin-based bone resorption assays. SDX-308 decreased constitutive and RANKL-stimulated NF-kappaB activation and osteoclast formation in an osteoclast cellular model, RAW 264.7. SDX-308 effectively suppressed TNF-alpha-induced IKK-gamma and IkappaB-alpha phosphorylation and degradation and subsequent NF-kappaB activation in human multiple myeloma cells. These results indicate that SDX-308 effectively inhibits multiple myeloma cell proliferation and osteoclast activity, potentially by controlling NF-kappaB activation signaling. We propose that SDX-308 is a promising therapeutic candidate to inhibit multiple myeloma growth and osteoclast activity and that it should receive attention for further study.
منابع مشابه
SDX-308, a nonsteroidal anti-inflammatory agent, inhibits NF- B activity, resulting in strong inhibition of osteoclast formation/activity and multiple myeloma cell growth
Multiple myeloma is characterized by increased osteoclast activity that results in bone destruction and lytic lesions. With the prolonged overall patient survival achieved by new treatment modalities, additional drugs are required to inhibit bone destruction. We focused on a novel and more potent structural analog of the nonsteroidal anti-inflammatory drug etodolac, known as SDX-308, and its ef...
متن کاملMULTIPLE MYELOMA Myeloma bone disease
Bone destruction is a hallmark of multiple myeloma, and recent studies demonstrated a strong interdependence between tumor progression and bone resorption. Increased bone resorption as a major characteristic of multiple myeloma is caused by osteoclast activation and osteoblast inhibition (uncoupling). Myeloma cells alter the local regulation of bone metabolism by increasing the receptor activat...
متن کاملIncreased signaling through p62 in the marrow microenvironment increases myeloma cell growth and osteoclast formation.
Adhesive interactions between multiple myeloma (MM) cells and marrow stromal cells activate multiple signaling pathways including nuclear factor kappaB (NF-kappaB), p38 mitogen-activated protein kinase (MAPK), and Jun N-terminal kinase (JNK) in stromal cells, which promote tumor growth and bone destruction. Sequestosome-1 (p62), an adapter protein that has no intrinsic enzymatic activity, serve...
متن کاملResveratrol inhibits myeloma cell growth, prevents osteoclast formation, and promotes osteoblast differentiation.
Multiple myeloma is characterized by the accumulation of clonal malignant plasma cells in the bone marrow, which stimulates bone destruction by osteoclasts and reduces bone formation by osteoblasts. In turn, the changed bone microenvironment sustains survival of myeloma cells. Therefore, a challenge for treating multiple myeloma is discovering drugs targeting not only myeloma cells but also ost...
متن کاملAdjuvants of Potential Value in Multiple Myeloma Treatment
Nuclear factor-kappa B (NF-kappa B) is an important transcription factor that regulates survival in many cells. Activated NF-kappa B has been shown to protect some haematopoietic neoplastic cells from apoptosis. In the present study, we analysed NF-kappa B status in 13 primary samples from patients with multiple myeloma (MM) and in four myeloma cell lines including U266, RPMI 8226, HS-Sultan an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 109 5 شماره
صفحات -
تاریخ انتشار 2007